A number sign (#) is used with this entry because the disorder is caused by mutation in the gene encoding short-chain acyl-CoA dehydrogenase (ACADS; 606885).

CLINICAL FEATURES

Two distinct clinical phenotypes of hereditary short-chain acyl-CoA dehydrogenase deficiency have been identified. One type has been observed in infants with acute acidosis and muscle weakness; the other has been observed in middle-aged patients with chronic myopathy. SCAD deficiency is generalized in the former type and localized to skeletal muscles in the latter. Cases with neonatal onset have a variable phenotype that includes metabolic acidosis, failure to thrive, developmental delay, and seizures, as well as myopathy (Roe and Ding, 2001). There are no episodes of nonketotic hypoglycemia, which are characteristic of medium-chain (MCAD; 607008) and long-chain (LCAD; 201460) acyl dehydrogenase deficiencies. 30 PubMed Neighbors

Amendt et al. (1987) described 2 unrelated patients, both of whom presented with neonatal metabolic acidosis and ethylmalonate excretion. Deficiency of short-chain acyl-CoA dehydrogenase was demonstrated in fibroblasts by both an electron-transfer flavoprotein (ETF)-linked dye-reduction assay and a tritium release ADH assay. 30 PubMed Neighbors

Coates et al. (1988) demonstrated deficiency of SCAD in a 2-year-old female whose early postnatal life was complicated by poor feeding, emesis, and failure to thrive. She demonstrated progressive skeletal muscle weakness and developmental delay. Her plasma total carnitine level was low-normal, but was esterified to an abnormal degree. The same was true for skeletal muscle carnitine. Fibroblasts from this patient had 50% of control levels of acyl-CoA dehydrogenase activity towards butyryl-CoA as substrate. All of this residual activity was inhibited by an antibody against medium-chain acyl-CoA dehydrogenase. These data demonstrated that medium-chain acyl-CoA dehydrogenase accounted for 50% of the activity towards the short-chain substrate, butyryl-CoA, under these conditions, but that antibody against that enzyme could be used to unmask the specific and virtually complete deficiency of short-chain acyl-CoA dehydrogenase in this patient. 30 PubMed Neighbors
Heterogeneity

Clinical Heterogeneity

Baerlocher et al. (1997) stated that up until 1996 about 10 patients in whom SCAD enzyme deficiency could be confirmed in fibroblasts had been described. Both the clinical and the biochemical pattern of the disease was heterogeneous, with all patients showing at least neuromuscular signs. *Baerlocher et al. (1997)* presented the case of a 16-year-old patient with growth failure, muscular wasting, and hypotonia since birth. 30 PubMed Neighbors

Turnbull et al. (1984) reported the case of a 53-year-old woman who presented with a lipid-storage myopathy and low concentrations of carnitine in skeletal muscle. Impaired fatty acid oxidation in muscle was found to be caused by deficiency of short-chain acyl-CoA (butyryl-CoA) dehydrogenase activity in mitochondria. The authors suggested that the muscle carnitine deficiency was secondary to this enzyme deficiency and urged that it be considered in other cases of lipid-storage myopathy with carnitine deficiency (212160). Onset of myopathy was at age 46 years. The patient described by
Turnbull et al. (1984) had normal SCADH activity in fibroblasts, which raises the possibility that a distinct SCADH isoenzyme exists in mammalian muscle. However, Amendt et al. (1992) found that in mice SCAD is the same in both muscle and fibroblasts. For that reason, Bhala et al. (1995) proposed that the case of Turnbull et al. (1984) was not a primary case of SCAD deficiency but rather a case of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency, as reported by DiDonato et al. (1989).

INHERITANCE

SCAD deficiency is an autosomal recessive disorder. Fibroblasts from the parents of the patient reported by Coates et al. (1988) had intermediate levels of activity towards butyryl-CoA, consistent with autosomal recessive inheritance.

DIAGNOSIS

The definitive diagnostic test for SCAD deficiency is an ETF-linked enzyme assay with butyryl-CoA as a substrate, performed after immunoactivation of MCAD, which has similar activity (Bhala et al., 1995; Tein et al., 1999).

PATHOGENESIS

Farnsworth et al. (1990) showed an absence of enzyme protein in skeletal muscle in the patient described by Coates et al. (1988). At least in some children with the severe systemic form of the disorder associated with metabolic acidosis, there is low activity of the enzyme but synthesis of normal-sized enzyme protein and mRNA.

MOLECULAR GENETICS

Naito et al. (1989) studied the mutant SCAD enzyme and cultured fibroblasts from 3 patients with the deficiency. No difference was observed on Southern or Northern blot analysis, suggesting that the defects in these cell lines were caused by point mutation. In a patient with SCAD deficiency, Naito et al. (1989) found evidence of compound heterozygosity; see 606885.0001 and 606885.0002.

GENOTYPE/PHENOTYPE CORRELATIONS

Gregersen et al. (2001) reviewed current understanding of genotype-phenotype relationships in VLCAD (201475), MCAD, and SCAD. They discussed both the structural implications of mutation type and the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. The realization that the effect of the monogene, such as disease-causing mutations in these 3 genes, may be modified by variations in other genes presages the need for profile analyses of additional genetic variations. They stated that the rapid development of mutation detection systems, such as chip technologies, made such profile analyses feasible.
In the course of screening mutant mice for organic acidurias using gas chromatography-mass spectrometry, Wood et al. (1989) discovered mice with SCAD deficiency. They had severe organic aciduria, excreting ethylmalonic and methylsuccinic acids and N-butyrylglycine, and developed a fatty liver on fasting or dietary fat challenge. After a fast they developed hypoglycemia and elevated urinary and muscle butyrylcarnitine concentrations. The mutation is at the butyryl-CoA dehydrogenase locus (Bcd1, or Acads), located on mouse chromosome 5 (Prochazka and Leiter, 1986). Yamanaka et al. (1992) studied the metabolic characteristics in these mice in a series of experiments using liver perfusion techniques and high pressure liquid chromatography. Studying 3 different cell lines from patients with SCAD deficiency, Amendt et al. (1992) authenticated the SCAD deficiency of the BALB/cByJ (J) mouse as a model of human SCAD deficiency. Both SCAD antigen and SCAD activity are totally lacking. The null allele was mapped to the structural locus for butyryl-CoA dehydrogenase on mouse chromosome 5 (Schiffer et al., 1989). Hinsdale et al. (1993) demonstrated that the null mutation is the result of a 278-bp deletion in the 3-prime end of the structural gene. Two major transcripts are produced in the mutant. One contains intronic sequence due to the absence of splicing, and the other results from missplicing of a normal splice donor site to a cryptic splice acceptor site in the 3-prime terminal exon. Both abnormal transcripts were found to have aberrant stop codons. Armstrong et al. (1993) described the histopathologic changes in the mouse model.

REFERENCES

PubMed ID : 1635815

PubMed ID : 3571488

PubMed ID : 8279487

PubMed ID : 9266373

 PubMed ID: 3335634

 PubMed ID: 11134486

 PubMed ID: 2774489

 PubMed ID: 2260861

10. Gregersen, N.; Andresen, B. S.; Corydon, M. J.; Corydon, T. J.; Olsen, R. K. J.; Bolund, L.; Bross, P.:
 PubMed ID: 11524729

 Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C-T, is present at an unexpectedly high frequency in the general population, as was the case for 625G-A, together conferring susceptibility to ethylmalonic aciduria. *Hum. Molec. Genet.* 7: 619-627, 1998.
 PubMed ID: 9499414

 Null allele at Bcd-1 locus in BALB/cByJ mice is due to a deletion in the short-chain acyl-CoA dehydrogenase gene and results in missplicing of mRNA. *Genomics* 16: 605-611, 1993.
 PubMed ID: 8325633
PubMed ID: [2808706](https://pubmed.ncbi.nlm.nih.gov/2808706/)

14. Prochazka, M.; Leiter, E. H.:

PubMed ID: [9578969](https://pubmed.ncbi.nlm.nih.gov/9578969/)

16. Roe, C. R.; Ding, J.:

17. Schiffer, S. P.; Prochazka, M.; Jezyk, P. F.; Roderick, T. H.; Yudkoff, M.; Patterson, D. F.:
PubMed ID: [2712823](https://pubmed.ncbi.nlm.nih.gov/2712823/)

18. Tein, I., Haslam, R. H. A.; Rhead, W. J.; Bennett, M. J.; Becker, L. E.; Vockley, J.:
PubMed ID: [9932958](https://pubmed.ncbi.nlm.nih.gov/9932958/)

PubMed ID: [6493275](https://pubmed.ncbi.nlm.nih.gov/6493275/)

20. Wood, P. A.; Amendt, B. A.; Rhead, W. J.; Millington, D. S.; Inoue, F.; Armstrong, D.:
PubMed ID: [2919115](https://pubmed.ncbi.nlm.nih.gov/2919115/)

PubMed ID: [1405468](https://pubmed.ncbi.nlm.nih.gov/1405468/)
CONTRIBUTORS

Cassandra L. Kniffin - reorganized : 4/30/2002
Victor A. McKusick - updated : 10/4/2001
Orest Hurko - updated : 6/15/1999
Orest Hurko - updated : 3/23/1999
Victor A. McKusick - updated : 2/12/1998

CREATION DATE

Victor A. McKusick : 6/2/1986

EDIT HISTORY

joanna : 4/4/2005
ckniffin : 6/13/2002
carol : 4/30/2002
carol : 4/30/2002
ckniffin : 4/30/2002
carol : 4/26/2002
terry : 4/26/2002
carol : 10/4/2001
terry : 6/16/1999
terry : 6/15/1999
carol : 3/23/1999
dkim : 12/15/1998
aloe : 6/12/1998
terry : 4/20/1998
mark : 2/20/1998
terry : 2/12/1998
mark : 2/2/1998
terry : 1/17/1997
terry : 5/28/1996
mimadm : 11/12/1995
terry : 7/18/1994
carol : 11/9/1993
carol : 7/13/1993
carol : 6/18/1993